Asymmetric Reduction with L-Proline Amide Derivatives of **1,4-Dihydronicotinarnide**

By NAOMICHI BABA, JUN'ICHI ODA, and YUZO INOUYE*

(Institute *for* Chemical Research, Kyoto University, *Uji,* Kyoto, *Japun)*

Summary The magnesium perchlorate-, zinc chloride-, and an L-proline amide in the 3-carbamoyl side-chain afforded cobalt chloride-catalysed asymmetric reduction of ethyl R-mandelate, the asymmetric yields being greatly benzoylformate with **1,4-dihydronicotinamides** carrying affected by the catalyst metal species **(5--83%).**

 R -mandelate, the asymmetric yields being greatly

THE stereochemistry of NADW model reactions is interesting to bio-organic chemists who wish to characterise the nature of asymmetric induction for synthetic purposes The dependence of stereochemistry on the conversion,¹ the effect of the dimethyl groups in chiral 2,4-dimethyl-1,4-dihydronicotinamide on the product stereochemistry,2 the peptide derivatives of an NADH model,³ the incorporation of chiral 1,4-dihydronicotinamide into a crown ether ring,* and the electronic factors in asymmetric NADH model reactions have already been reported *⁵*

We now describe the asymmetric reduction of the prochiral carbonyl substrates (5) and (6) by the use of L-proline amide derivatives[†] of the 1,4-dihydronicotinamides **(1)**, **(2)**, and **(4)** using metal ion catalysts to give the corresponding alcohols with an asymmetric bias ranging from 5 to **83%** enantiomeric excess (e e)

In a typical run, the 1,4-dihydronicotinamide **(1)** (u v λ_{max} (ethanol) 349 nm (ϵ 5040), [α]²⁵ 67 6° (c 1 235, ethanol), *0* 47 g, **1 43** mmol)), anhydrous magnesium perchlorate

(0 26g, **1** 14mmol), and the substrate *(5)* (0 20g, **1** 14 mmol) in dry acetonitrile (13 ml), were stirred at 50 \degree C for 7 days under nitrogen After the usual work-up,lb the reduction product, ethyl mandelate $(0\ 17\ g$, $84\ 0\frac{1}{2})$, was isolated pure by preparative t 1 c (Kieselgel **60G,** developed by benzene) $\{[\alpha]_D^{25} - 1050^\circ \ (c \ 1 \ 11, \text{ chloroform})\}$ **832%** ee)

As can be seen from the data in the Table, both the chemical and optical yields of ethyl mandelate attained a maximum with the simplest model **(I),** using magnesium perchlorate under the specified conditions Interestingly, the optical yield was greatly affected by replacing magnesium perchlorate with zinc and cobalt chloride (runs $1-3$) as was the model reductant (2), which carries an additional amide group in the N-1 substituent In the latter case however, the highest optical yield was obtained in the cobalt chloride-catalysed reduction (run 6) which suggests the important role of metal ions in the stereochemicaldetermining transition state To our knowledge, this is the first observed example of a variation in the stereochemistry with metal ion species in NADH model reactions

In a relevant system,^{1b} the initial addition of the oxidised NADH model to the reduction mixture remarkably improved the ee of the product mandelate In order to discover whether such a chelate control is operative here, a similar reduction was carried out with the oxidised form **(3)** initxally added to this system which, unexpectedly, lowered the asymmetric bias to 42% (run 7) In addition, the use of a smaller amount of metal ion (compare runs **10** and **8)** and of a binary solvent medium (methylene chloride-acetonitrile) of reduced polarity brought about **a** decline in the asymmetric yield (run 11) Asymmetric reduction of trifluoroacetophenone under the same optimised conditions using **(1)** resulted in barely 31% e e of the corresponding product alcohol (run 12)

Whitesell and Felman⁶ noticed that the asymmetric bias was doubled by the introduction of C_2 symmetry in the alkylation of chiral enamines, so **u** e designed and prepared another model compound **(4)** for testing the symmetry effect The observed e e $(47\%$ in run 13) was lower than that in run 9 in which the reductant (1) of C_1 symmetry was used under exactly the same conditions Accordingly,

TABLE Reduction of ethyl benzoylformate and trifluoroacetophenone with chiral **NADH** models

Run	NADH model	Substrate	Metal catalyst	Metal model ratio	T /°C	Reaction t /days	$\%$ Yield	$[\alpha]_{\mathbf{D}}^{25}/^{\circ}(c)^{\mathbf{a}}$	$\%$ eeb R
	$\bf(1)$	(5)	$Mg(CIO_4)_2$	080	r t	12	372	$-997(0824)$	79 1
2		(5)	ZnCl ₂	080	r t	12	84	$-58(0463)$	46
3		$\left(5\right)$	CoCl ₂	080	r t	12	50	$-171(0784)$	135
4	$\bf (2)^c$	(5)	$Mg(\text{ClO}_4)_2$	0 74	r t	10	433	$-428(2289)$	185
5	(2)	(5)	ZnCl ₂	074	r t	13	180	$-414(1027)$	329
6	(2)	(5)	CoCl ₂	0 74	r t	13	232	$-746(0911)$	59 1
		(5)	$Mg(CIO_4)_2$	1~00 ^d	50	7	706	$-529(1303)$	419
8	$\bf(1)$	(5)	M_{g} (ClO ₄) ₂	080	50		840	$-1050(1113)$	832
9	$\bf(1)$	(5)	$Mg(CIO_4)_2$	150	60	283	584	$-832(1089)$	663
10	(1)	(5)	Mg(CIO ₄) ₂	040	r t	050	36 1	$-891(1152)$	706
11 ^e	(1)	(5)	Mg(CIO ₄) ₂	080	50	0 0 4 2	707	$-891(0846)$	706
12	$\bf(1)$	(6)	$Mg(CIO_4)_2$	1 00	50	7	215	$+39(1082)^t$	310
13	$(4)^g$	(5)	M_{g} (ClO ₄) ₂	150	60	283	338	$-594(1079)$	47 1

^aMeasured in chloroform b Based on the reported maximum rotation **of** ethyl mandelate & **126** *2'* in chloroform (R Roger *^JChem Soc* , **1932, 2168),** and of phenyltrifluoromethylcarbinol, + **13 4"** in benzene (J Jurczak **A** Konowal, and Z Krawczyk *Synthesis,* 1977, 258) c U v λ_{max} 342 nm(ϵ 3950 ethanol) [α] $^{25}_{10}$ 54 8° (c 3 508, ethanol) d Compound (3) added (m p 192—194 °C) A mixture of acetonitrile (8 ml) and methylene chloride (4 ml) was used as solvent **f** Measured in benzene **f** U_V λ_{max} 370 nm $(\epsilon 5920, \text{ ethanol}), [\alpha]_D^{25}$ 32 0° (*c* 0 75, ethanol) **c U v** λ_{max} 342 nm(ϵ 3950 ethanol) $[\alpha]_D^{25}$ 54 8° (*c* 3 508, ethanol)

t **All** the compounds reported herein gave **I** r , u v , and **1H** n m r spectra consistent with the assigned structures

such a symmetry element effect is not operative in this *sys*tem.

Finally, the stereospecificity attained here with chiral **NADH** models may reasonably be due to the conformational rigidity of the transition state associated with pyrrolidine and dihydropyridine heteroatoms as well as the substrate carbonyl through the metal ion-mediated chelative interactions.

The importance of such a chelation control in systems involving heteroatoms has been of acute interest' in asymmetric syntheses.

(Received, 2nd June **1980;** *Corn.* **581.)**

(a) **A** Ohno, T. Kimura, S. Oka, and Y. Ohnishi, *Tetrahedron Lett.,* **1978, 757;** (b) T. Makmo, T. Nunozawa, N. Baba, J. Oda, and **A.** Ohno, M. Ikeguchi, **T.** Kimura, and S. Oka, *J. Am. Chem.* Soc., **1979, 101, 7036.** Y. Inouye, *J. Chem. Soc., Perkin Trans.* **1, 1980, 7.**

T. Endo, H. Kawasaki, and M. Okawara, *Tetrahedron Lett.,* **1979, 23;** N. Baba, J. Oda, and *Y.* Inouye, *Bull. Inst. Chem. Res., Kyoto Unzv.,* in the press.

J. G. deVries and R. M. Kellogg, *J. Am. Chem. Soc.*, 1979, 101, 2795.
N. Baba, T. Makino, J. Oda, and Y. Inouye, Can. J. Chem., 1980, 58, 387.
J. K. Whitesell and S. W. Felman, *J. Org. Chem.*, 1977, 42, 1663.
A. I. Meyer